Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods



de

,

Éditeur :

Springer


Collection :

Advances in Computer Vision and Pattern Recognition

Paru le : 2013-06-15



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
116,04

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.
Pages
374 pages
Collection
Advances in Computer Vision and Pattern Recognition
Parution
2013-06-15
Marque
Springer
EAN papier
9781447151845
EAN EPUB
9781447151852

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
37
Taille du fichier
8028 Ko
Prix
116,04 €