Ensemble Machine Learning

Methods and Applications

de

,

Éditeur :

Springer


Paru le : 2012-02-17



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
231,04

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.
 
Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Pages
332 pages
Collection
n.c
Parution
2012-02-17
Marque
Springer
EAN papier
9781441993250
EAN PDF
9781441993267

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
5366 Ko
Prix
231,04 €
EAN EPUB
9781441993267

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
33
Taille du fichier
28109 Ko
Prix
231,04 €

Suggestions personnalisées