Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations

de

Éditeur :

Birkhäuser


Collection :

Pseudo-Differential Operators

Paru le : 2019-05-17

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
116,04

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The asymptotic distribution of eigenvalues of self-adjoint differential operators in the high-energy limit, or the semi-classical limit, is a classical subject going back to H. Weyl of more than a century ago.
In the last decades there has been a renewed interest in non-self-adjoint differential operators which have many subtle properties such as instability under small perturbations. Quite remarkably, when adding small random perturbations to such operators, the eigenvalues tend to distribute according to Weyl's law (quite differently from the distribution for the unperturbed operators in analytic cases). A first result in this direction was obtained by M. Hager in her thesis of 2005. Since then, further general results have been obtained, which are the main subject of the present book.
Additional themes from the theory of non-self-adjoint operators are also treated. The methods are very much based on microlocal analysis and especially on pseudodifferential operators. The reader will find a broad field with plenty of open problems.
Pages
496 pages
Collection
Pseudo-Differential Operators
Parution
2019-05-17
Marque
Birkhäuser
EAN papier
9783030108182
EAN PDF
9783030108199

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
49
Taille du fichier
12585 Ko
Prix
116,04 €
EAN EPUB
9783030108199

Informations sur l'ebook
Nombre pages copiables
4
Nombre pages imprimables
49
Taille du fichier
72294 Ko
Prix
116,04 €