Automatic Detection of Irony

Opinion Mining in Microblogs and Social Media

de

, ,

Éditeur :

Wiley-ISTE


Paru le : 2019-10-28



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
163,47

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
In recent years, there has been a proliferation of opinion-heavy texts on the Web: opinions of Internet users, comments on social networks, etc. Automating the synthesis of opinions has become crucial to gaining an overview on a given topic. Current automatic systems perform well on classifying the subjective or objective character of a document. However, classifications obtained from polarity analysis remain inconclusive, due to the algorithms' inability to understand the subtleties of human language. Automatic Detection of Irony presents, in three stages, a supervised learning approach to predicting whether a tweet is ironic or not. The book begins by analyzing some everyday examples of irony and presenting a reference corpus. It then develops an automatic irony detection model for French tweets that exploits semantic traits and extralinguistic context. Finally, it presents a study of portability in a multilingual framework (Italian, English, Arabic).
Pages
210 pages
Collection
n.c
Parution
2019-10-28
Marque
Wiley-ISTE
EAN papier
9781786303998
EAN PDF
9781119671152

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
210
Taille du fichier
6461 Ko
Prix
163,47 €
EAN EPUB
9781119671220

Informations sur l'ebook
Nombre pages copiables
0
Nombre pages imprimables
210
Taille du fichier
2038 Ko
Prix
163,47 €

Suggestions personnalisées