Anomaly-Detection and Health-Analysis Techniques for Core Router Systems



de

, , ,

Éditeur :

Springer


Paru le : 2019-12-19



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
89,66

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today’s Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status.


Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis;Presents the design of a changepoint-based anomaly detector;Includes Hierarchical Symbol-based Health-Status Analysis;Describes an iterative, self-learning procedure for assessing the health status.
Pages
148 pages
Collection
n.c
Parution
2019-12-19
Marque
Springer
EAN papier
9783030336639
EAN PDF
9783030336646

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
14
Taille du fichier
11203 Ko
Prix
89,66 €
EAN EPUB
9783030336646

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
14
Taille du fichier
38789 Ko
Prix
89,66 €

Suggestions personnalisées