Low-overhead Communications in IoT Networks

Structured Signal Processing Approaches de

, ,

Éditeur :

Springer


Paru le : 2020-04-17

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The recent developments in wireless communications, networking, and embedded systems have driven various innovative Internet of Things (IoT) applications, e.g., smart cities, mobile healthcare, autonomous driving and drones. A common feature of these applications is the stringent requirements for low-latency communications. Considering the typical small payload size of IoT applications, it is of critical importance to reduce the size of the overhead message, e.g., identification information, pilot symbols for channel estimation, and control data. Such low-overhead communications also help to improve the energy efficiency of IoT devices. Recently, structured signal processing techniques have been introduced and developed to reduce the overheads for key design problems in IoT networks, such as channel estimation, device identification, and message decoding. By utilizing underlying system structures, including sparsity and low rank, these methods can achieve significant performance gains.
This book provides an overview of four general structured signal processing models: a sparse linear model, a blind demixing model, a sparse blind demixing model, and a shuffled linear model, and discusses their applications in enabling low-overhead communications in IoT networks. Further, it presents practical algorithms based on both convex and nonconvex optimization approaches, as well as theoretical analyses that use various mathematical tools.
Pages
152 pages
Collection
n.c
Parution
2020-04-17
Marque
Springer
EAN papier
9789811538698
EAN PDF
9789811538704

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
3041 Ko
Prix
94,94 €
EAN EPUB
9789811538704

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
15
Taille du fichier
11653 Ko
Prix
94,94 €

Suggestions personnalisées