Scalarization and Separation by Translation Invariant Functions

with Applications in Optimization, Nonlinear Functional Analysis, and Mathematical Economics de

,

Éditeur :

Springer


Collection :

Vector Optimization

Paru le : 2020-06-28

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Like norms, translation invariant functions are a natural and powerful tool for the separation of sets and scalarization. This book provides an extensive foundation for their application. It presents in a unified way new results as well as results which are scattered throughout the literature. The functions are defined on linear spaces and can be applied to nonconvex problems. Fundamental theorems for the function class are proved, with implications for arbitrary extended real-valued functions. The scope of applications is illustrated by chapters related to vector optimization, set-valued optimization, and optimization under uncertainty, by fundamental statements in nonlinear functional analysis and by examples from mathematical finance as well as from consumer and production theory.  
The book is written for students and researchers in mathematics and mathematical economics. Engineers and researchers from other disciplines can benefit from the applications, for example from scalarization methods for multiobjective optimization and optimal control problems. 

Pages
690 pages
Collection
Vector Optimization
Parution
2020-06-28
Marque
Springer
EAN papier
9783030447212
EAN PDF
9783030447236

Informations sur l'ebook
Nombre pages copiables
6
Nombre pages imprimables
69
Taille du fichier
10906 Ko
Prix
94,94 €
EAN EPUB
9783030447236

Informations sur l'ebook
Nombre pages copiables
6
Nombre pages imprimables
69
Taille du fichier
73687 Ko
Prix
94,94 €