Mild Differentiability Conditions for Newton's Method in Banach Spaces

de

,

Éditeur :

Birkhäuser


Collection :

Frontiers in Mathematics

Paru le : 2020-07-03

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
58,01

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


In this book the authors use a technique based on recurrence relations to study the convergence of the Newton method under mild differentiability conditions on the first derivative of the operator involved. The authors’ technique relies on the construction of a scalar sequence, not majorizing, that satisfies a system of recurrence relations, and guarantees the convergence of the method. The application is user-friendly and has certain advantages over Kantorovich’s majorant principle. First, it allows generalizations to be made of the results obtained under conditions of Newton-Kantorovich type and, second, it improves the results obtained through majorizing sequences. In addition, the authors extend the application of Newton’s method in Banach spaces from the modification of the domain of starting points. As a result, the scope of Kantorovich’s theory for Newton’s method is substantially broadened. Moreover, this technique can be applied to any iterative method.

This book is chiefly intended for researchers and (postgraduate) students working on nonlinear equations, as well as scientists in general with an interest in numerical analysis.
Pages
178 pages
Collection
Frontiers in Mathematics
Parution
2020-07-03
Marque
Birkhäuser
EAN papier
9783030487010
EAN PDF
9783030487027

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
17
Taille du fichier
4966 Ko
Prix
58,01 €
EAN EPUB
9783030487027

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
17
Taille du fichier
15043 Ko
Prix
58,01 €