Quantification of Uncertainty: Improving Efficiency and Technology

QUIET selected contributions de

, ,

Éditeur :

Springer


Collection :

Lecture Notes in Computational Science and Engineering

Paru le : 2020-07-30

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
94,94

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.

Pages
282 pages
Collection
Lecture Notes in Computational Science and Engineering
Parution
2020-07-30
Marque
Springer
EAN papier
9783030487201
EAN PDF
9783030487218

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
28
Taille du fichier
10721 Ko
Prix
94,94 €
EAN EPUB
9783030487218

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
28
Taille du fichier
39752 Ko
Prix
94,94 €