Adversary-Aware Learning Techniques and Trends in Cybersecurity

de

, ,

Éditeur :

Springer


Paru le : 2021-01-22

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,14

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of Things (IoT) with diverse data modalities, and, techniques to enable AI/ML systems to intelligently interact with humans that could be malicious adversaries and/or benign teammates. Readers of this book will be equipped with definitive information on recent developments suitable for countering adversarial threats in AI/ML systems towards making them operate in a safe, reliable and seamless manner.
Pages
227 pages
Collection
n.c
Parution
2021-01-22
Marque
Springer
EAN papier
9783030556914
EAN PDF
9783030556921

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
5356 Ko
Prix
137,14 €
EAN EPUB
9783030556921

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
22
Taille du fichier
19282 Ko
Prix
137,14 €

Suggestions personnalisées