Handbook of Dynamic Data Driven Applications Systems

Volume 1

de

, , ,

Éditeur :

Springer


Paru le : 2022-05-11



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
252,14

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies.
Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in ten application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal:
The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination.




The Dynamically Data Driven Applications Systems (DDDAS) paradigm inspired research regarding the prediction of severe storms.  Specifically, the DDDAS concept allows atmospheric observing systems, computer forecast models, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions.  In so doing, all resources are used in an optimal manner to maximize the quality and timeliness of information they provide.
                                            Kelvin Droegemeier, Regents’ Professor of Meteorology at the University of Oklahoma; former Director of the White House Office of Science and Technology Policy
                                          
We may well be entering the golden age of data science, as society in general has come to appreciate the possibilities for organizational strategies that harness massive streams of data. The challenges and opportunities are even greater when the data or the underlying system are dynamic - and DDDAS is the time-tested paradigm for realizing this potential.
                          Sangtae Kim, Distinguished Professor of Mechanical Engineering and Distinguished Professor of Chemical Engineering at Purdue University
Pages
766 pages
Collection
n.c
Parution
2022-05-11
Marque
Springer
EAN papier
9783030745677
EAN PDF
9783030745684

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
76
Taille du fichier
33341 Ko
Prix
252,14 €
EAN EPUB
9783030745684

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
76
Taille du fichier
145746 Ko
Prix
252,14 €

Suggestions personnalisées