Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems

de

, ,

Éditeur :

Springer


Paru le : 2022-10-19

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
105,49

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era.
Features:
Addresses the critical challenges in the field of PHM at presentPresents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosisProvides abundant experimental validations and engineering cases of the presented methodologies
Pages
281 pages
Collection
n.c
Parution
2022-10-19
Marque
Springer
EAN papier
9789811691300
EAN PDF
9789811691317

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
28
Taille du fichier
13169 Ko
Prix
105,49 €
EAN EPUB
9789811691317

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
28
Taille du fichier
59259 Ko
Prix
105,49 €

Suggestions personnalisées