Advances in Graph Neural Networks

de

, ,

Éditeur :

Springer


Paru le : 2022-11-16

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
63,29

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of advanced graph representation learning methods with a focus on graph neural networks. The book providers researchers and practitioners with an understanding of the fundamental issues as well as a launch point for discussing the latest trends in the science. The authors emphasize several frontier aspects of graph neural networks and utilize graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology. Several frontiers of graph neural networks are introduced, which enable readers to acquire the needed techniques of advances in graph neural networks via theoretical models and real-world applications. 
Pages
198 pages
Collection
n.c
Parution
2022-11-16
Marque
Springer
EAN papier
9783031161735
EAN PDF
9783031161742

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
19
Taille du fichier
5673 Ko
Prix
63,29 €
EAN EPUB
9783031161742

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
19
Taille du fichier
26317 Ko
Prix
63,29 €

Suggestions personnalisées