Extreme Value Theory for Time Series

Models with Power-Law Tails de

,

Éditeur :

Springer


Paru le : 2024-08-02

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
232,09

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book deals with extreme value theory for univariate and multivariate time series models characterized by power-law tails. These include the classical ARMA models with heavy-tailed noise and financial econometrics models such as the GARCH and stochastic volatility models.
Rigorous descriptions of power-law tails are provided through the concept of regular variation. Several chapters are devoted to the exploration of regularly varying structures.
The remaining chapters focus on the impact of heavy tails on time series, including the study of extremal cluster phenomena through point process techniques.
A major part of the book investigates how extremal dependence alters the limit structure of sample means, maxima, order statistics, sample autocorrelations. 
This text illuminates the theory through hundreds of examples and as many graphs showcasing its applications to real-life financial and simulated data.
The book can serve as a text for PhD and Master courses on applied probability, extreme value theory, and time series analysis.
It is a unique reference source for the heavy-tail modeler. Its reference quality is enhanced by an exhaustive bibliography, annotated by notes and comments making the book broadly and easily accessible.
 
 
Pages
766 pages
Collection
n.c
Parution
2024-08-02
Marque
Springer
EAN papier
9783031591556
EAN PDF
9783031591563

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
76
Taille du fichier
28590 Ko
Prix
232,09 €
EAN EPUB
9783031591563

Informations sur l'ebook
Nombre pages copiables
7
Nombre pages imprimables
76
Taille du fichier
81562 Ko
Prix
232,09 €

Suggestions personnalisées