Two-dimensional Self and Product Cubic Systems, Vol. I

Self-linear and Crossing-quadratic Product Vector Field

de

Éditeur :

Springer


Paru le : 2024-11-15



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
168,79

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:  double-inflection saddles,   inflection-source (sink) flows,  parabola-saddles (saddle-center),  third-order parabola-saddles,   third-order saddles (centers),  third-order saddle-source (sink).
 
 
 
Pages
232 pages
Collection
n.c
Parution
2024-11-15
Marque
Springer
EAN papier
9783031570957
EAN PDF
9783031570964

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
23
Taille du fichier
8223 Ko
Prix
168,79 €
EAN EPUB
9783031570964

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
23
Taille du fichier
46275 Ko
Prix
168,79 €

Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers. 

Suggestions personnalisées