Multi-valued Logic for Decision-Making Under Uncertainty



de

, ,

Éditeur :

Birkhäuser


Paru le : 2025-02-17



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
200,44

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

Multi-valued and fuzzy logics provide mathematical and computational tools for handling imperfect information and decision-making with rational collective reasoning and irrational individual judgements. 
The suggested implementation of multi-valued logics is based on the uninorm and absorbing norm with generating functions defined by probability distributions. Natural extensions of these logics result in non-commutative and non-distributive logics. In addition to Boolean truth values, these logics handle subjective truth and false values and model irrational decisions. Dynamics of decision-making are specified by the subjective Markov process and learning – by neural network with extended Tsetlin neurons. Application of the suggested methods is illustrated by modelling of irrational economic decisions and biased reasoning in the wisdom-of-the-crowd method, and by control of mobile robots and navigation of their groups.
Topics and features: Bridges the gap between fuzzy and probability methods Includes examples in the field of machine-learning and robots’ control Defines formal models of subjective judgements and decision-making Presents practical techniques for solving non-probabilistic decision-making problems Initiates further research in non-commutative and non-distributive logics
The book forms a basis for theoretical studies and practice of decision-making under uncertainty and will be useful for computer scientists and mathematicians interested in multi-valued and fuzzy logic, as well as for engineers working in the field of data mining and data analysis.
Pages
194 pages
Collection
n.c
Parution
2025-02-17
Marque
Birkhäuser
EAN papier
9783031747618
EAN PDF
9783031747625

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
19
Taille du fichier
9308 Ko
Prix
200,44 €
EAN EPUB
9783031747625

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
19
Taille du fichier
18964 Ko
Prix
200,44 €

Dr. Evgeny Kagan is with the Faculty of Engineering, Ariel University, Israel.

Dr. Alexander Rybalov is with the LAMBDA Laboratory, Tel-Aviv University, Israel.

Prof. Ronald Yager is with the Machine Learning Institute, Yona College, New York, USA.

Suggestions personnalisées