Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures



de

,

Éditeur :

Springer


Collection :

Mathématiques et Applications

Paru le : 2006-08-23



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
45,35

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description
This book is devoted to analyze the vibrations of simpli?ed 1? d models of multi-body structures consisting of a ?nite number of ?exible strings d- tributed along planar graphs. We?rstdiscussissueson existence and uniquenessof solutions that can be solved by standard methods (energy arguments, semigroup theory, separation ofvariables,transposition,...).Thenweanalyzehowsolutionspropagatealong the graph as the time evolves, addressing the problem of the observation of waves. Roughly, the question of observability can be formulated as follows: Can we obtain complete information on the vibrations by making measu- ments in one single extreme of the network? This formulation is relevant both in the context of control and inverse problems. UsingtheFourierdevelopmentofsolutionsandtechniquesofNonharmonic Fourier Analysis, we give spectral conditions that guarantee the observability property to hold in any time larger than twice the total length of the network in a suitable Hilbert space that can be characterized in terms of Fourier series by means of properly chosen weights. When the network graph is a tree, we characterize these weights in terms of the eigenvalues of the corresponding elliptic problem. The resulting weighted observability inequality allows id- tifying the observable energy in Sobolev terms in some particular cases. That is the case, for instance, when the network is star-shaped and the ratios of the lengths of its strings are algebraic irrational numbers.
Pages
230 pages
Collection
Mathématiques et Applications
Parution
2006-08-23
Marque
Springer
EAN papier
9783540272397
EAN PDF
9783540377269

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
23
Taille du fichier
1761 Ko
Prix
45,35 €