Feature Selection for High-Dimensional Data

de

, ,

Éditeur :

Springer


Collection :

Artificial Intelligence: Foundations, Theory, and Algorithms

Paru le : 2015-10-05

eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
52,74

Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.
The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms.
They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.
The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
Pages
147 pages
Collection
Artificial Intelligence: Foundations, Theory, and Algorithms
Parution
2015-10-05
Marque
Springer
EAN papier
9783319218571
EAN PDF
9783319218588

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
14
Taille du fichier
1321 Ko
Prix
52,74 €