Algorithmic Advances in Riemannian Geometry and Applications

For Machine Learning, Computer Vision, Statistics, and Optimization

de

,

Éditeur :

Springer


Collection :

Advances in Computer Vision and Pattern Recognition

Paru le : 2016-10-05



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
137,14

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking.
Pages
208 pages
Collection
Advances in Computer Vision and Pattern Recognition
Parution
2016-10-05
Marque
Springer
EAN papier
9783319450254
EAN PDF
9783319450261

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
6441 Ko
Prix
137,14 €
EAN EPUB
9783319450261

Informations sur l'ebook
Nombre pages copiables
2
Nombre pages imprimables
20
Taille du fichier
4393 Ko
Prix
137,14 €