Téléchargez le livre :  Reinforcement Learning

Reinforcement Learning

With Open AI, TensorFlow and Keras Using Python

de

,

Éditeur :

Apress


Paru le : 2017-12-07



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
75,76

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description


Master reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You’ll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process. 


Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov’s Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI  before looking at Open AI Gym. You’ll then learn about Swarm Intelligence with Python in terms of reinforcement learning.
 
The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There’s also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google’s Deep Mind and see scenarios where reinforcement learning can be used. 


What You'll Learn 

Absorb the core concepts of the reinforcement learning process
Use advanced topics of deep learning and AI
Work with Open AI Gym, Open AI, and Python Harness reinforcement learning with TensorFlow and Keras using Python




Who This Book Is For


Data scientists, machine learning and deep learning professionals, developers who want to adapt and learn reinforcement learning.



Pages
167 pages
Collection
n.c
Parution
2017-12-07
Marque
Apress
EAN papier
9781484232842
EAN PDF
9781484232859

Informations sur l'ebook
Nombre pages copiables
1
Nombre pages imprimables
16
Taille du fichier
11315 Ko
Prix
75,76 €

Suggestions personnalisées